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{
We give a precise geometrical description of the set of steady-state
solutions for general classes of semilinear heat equations. This enables us
to prove global results about the asymptotic behaviour of the solutions of the

initial value problem.
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SIGNIFICANCE AND EXPLANATION }

Semilinear heat equations - i,e. heat equations perturbed by a

E4 .
k- nonlinearity acting only on the lowest order term - arise in many contexts,
;S It is well known that when studying the asymptotic behaviour of the solutions
- as the time t tends to infinity, a crucial role is played by the steady-
3
: state solutions. 1In this paper we present a global geometrical description of
: the set of steady-state solutions and this description enables us to give
!
1 { global results on the asymptotic behaviour of the solutions of the initial
value problem.
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STRUCTURE OF THE SET OF STEADY-STATE SOLUTIONS
AND ASYMPTOTIC BEHAVIOUR OF SEMILINEAR
HEAT EQUATIONS

P. L. Lions*

Introduction: Let £ be a bounded, smooth, connected domain in RF. We consider both the

initial value problem:

3 su=t in 8% (04w
(IVP)
u{x,t) = 0 on 388 x (0,+=), u(x,0) = uo(x) in @
and the stationary problem:
(SP) bu=g(u) in @ , u=0 on 30
where ug is some given initial condition and f is a given nonlinearity of class c'.
To explain our results, let us take, to simplity, the case when f is bounded on R.
We denote by S the set of solutions of (SP) (in Cz(ﬁ)) and by S, (resp. §_, resp. Sj,)
the set of functions u in S such that:
A1(—A - £'(u)) > 0 (resp. < O, resp. = 0) ;
where X‘(-A + c(x)) denotes the first eigenvalue of -4 ¢+ c(x) acting over H;(n).
We prgve here that we have:

i) S+ consists of a at most countable number of isolated points,

ii) Every closed connected subset of S0 is a totally ordered c! curve,

iii) If C 1is a connected subset of §_ then C, the closure of C, is contained in

S_. And this implies that for every u,, the w-limit set w(uo) (i.e., the set of

functions u such that there exists tn ; ® with u(',tn) ; u{®*)) is contained either

in s, either in S, or in S_.

wWe next define:

*
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We next define:

I, = {uo . wlug) c S+}

I_= {uo , wlug)C s_}
Iy = {uo RCICR R so} .
We then prove that we have:

(i) I,V I, contains an open dense set;

(ii) on 1, U Toe w(uo) is a singleton;

(iii) 1f € I_, then there exists € > 0, v,8s Us, v_6es, U's, such that, for

Yo

0
all ;0 e B(uo,e) = {la - uol ¢ €} (for some norm lel precised below), we have:

v, > Uy Uy F Uy = wlug) = {v+}

uy € ug, Uy Fuy wm> wlug) = v} .

In addition we can identify v, and v_: for example, v_ is the minimum element of S

+ +

above any function of w(uo). In particular in view of (i), (ii), generically in u,,

the solution wulx,t) of_ (IVP) converges as time goes to +» to a stable solution (in a

linearized sense) of (SP).

This study is, in some sense, the sequel of (13), where we studied the case when £
is convex; and in the study of the (IVP) we will use strongly some results of [13].

The fact that, on Igs w(uo) reduces to only one point is related to a recent work of
J. K. Hale and P, Massatt [10] (and actually can be deduced from {[10] and the description
of 8o given above). The only global results describing the instability of steady-state
solutions in S_ are given in H, Fujita (9}, P, L. Lions (13], and D. Henry (11}, (12] -
let us remark that in [9) only a very special case is studied, while in D. Henry [11],
[12)}, it is assumed that not only so is empty, but that, for all u in S_, the
linearized operator -A - £'(u) is one to one., Pinally let us mention the related works
of H. Matano [14], [15); N. Chafee [4]; N. Chafee and E. Infante [5]; W. H. Fleming (8];

M. G, Crandall, P, Pife and L. A, Peletier (6]; M. Bertsch, P. L. Lions and L. A. Peletier

[3].
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In section I below, we study the sets ) S_, s0 and we prove claimg i), ii) and
iii). In section II, we give the proofs of the assertions concerning the asymptotic
behaviour of the solutions of (IVP) in the case when f is such that the orbits are

compact. Finally, in section III, we give various remarks and extensions,.

Remark: The results and proofs given below remain trivially valid if the operator -~A |is

replaced by a general self-adjoint operator A
A= - 1% }-% (a4 (x) ﬁ-j—) + c(x)

(with (aij) uniformly ellliptic); if f£(t) 1is replaced by a nonlinearity of the form
f(x,t) and if the Dirichlet boundary condition is replaced by a general boundary condition
{insuring the maximum principle) as for example:

%% + b(x)u = p(x) on N
where n is the unit outward normal, b » 0, ¢ 1is given.

Let us also mention that the results of section I remain true for a general second-

order elliptic operator (even if not self-adjoint),

I. Structure of the set of steady-state solutions

et f 6 c‘(n), we denote by S the set of solutions u € C2(§) of (SP):
(sP) bu = £(u) in Q, uec’ @, u=0 on 30 .

If we denote by X1(-A + c(x)) the first eigenvalue of the operator (-A + c) on the
space H;(ﬁ) (for any c¢ € ﬁ.(ﬂ)); then we introduce S, (resp. S_, resp. §,):
s, = {ues, Aj(-A - £r(u)) > 0}
s_={ues, A (-8 - £r () < o}
So
In the result which follows, the topology is the one of the space Co(ﬁ) = {u @ c(M,

= {ue@gs, x1(-A - £'(u)) =0} .

u=0 on af},

Theorem I.1:

i) s, consists of a at most countable number of isolated points,

3=




ii) Every closed connected subset of S, is a totally ordered ¢! curve (for the

partial order: u <€ v, if u(x) < v(x) ¥x€ o,

3 ’2 iii) 1f ¢ _is a connected subset of S_ then Cc S_,
1 : iv) For each u € S, if the set M (u) = fues, u>u, v 7 ul is not empty then it
’ ? has a minimum element m ,(u) and m,(u) € 5,V Sge Similarly, if
‘7 , H_(u) = {; 8 s, u < u, 2 F ul # 9, then this set has a maximum element m_(u) and

; m_(u) 6 S, U S5

v) If C is a connected component of S_ such that there exists u 6(C with
M, (u) ¢ @ (resp. M_(u) # @) then M (V) # P (resp. M (v) # @) for all v € C and m,

] (resp. m_) is constant on C.
3 Remark I.1: By a simple use of the strong maximum principle (and of Hopf maximum
L principle) we have:
-t () m. (u) >u>m (u) in Q,-g—(m(u))<-;3<-g—(n(u)) on 3 ,

‘ + - n 4+ n n -

; Before giving the proof of Theorem 1.1, we mention first an easy application of

" Theorem I.1 and state a result insuring that M, (n) or M_(u) are not empty.

‘é Corollary I.1: Let C be a closed connected subset of S then either CC §,, either

;o CCs_ or CC s,
Proof: If C N s, ¥ ¢ then because of i) we have obviously:
c={u}cs .
+
On the other hand if C NS_ 4 @, then by the preceding argument we have necessarily:
cNs, =¢g. Thus:

C=(cn S_) u({cn So), cn S_) n{cn SO) =0 .

But in view of ii), C NS_ is closed since CN §_C S_. On the other hand, C and
S, being closed, C N so is closed. Now, since C 1is connected this implies: CN S_
or C N 89 is empty; and since we assumed C NS_ ¢ g, we conclude: C N Sp = g or
cCs_,

Proposition I.1: let u@ s_.
(1) Then M, (u) 1is not empty if and only if there exists w @ Cz(?f) such that:

(2) -Aw>f(w)i_r19,w)uu'§,w;u. \

-4-
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{ii) similarly M_(u) is not empty if and only if there exists w € Cz(ﬁ) such that

(3) bw< f(w) in 8, w<u in W, wFu .

The proof of Proposition I.1 will be given below, together with the proof of iv).

Remark I.2: If £(t) satisfies:

(4) T (o < A, = A (=0)
try

then M _(u) is not empty for all u € S_. Indeed let u be such that:

s f(oe <u< A e
trem

we have for some C > O:

f(t) Syt +C , forall t >0 .,
Next, let LY be the solution of
2 H
-Aw, -uv, =X in &, v, 6C @™, w, =0 on 30 E
with ) > 1, i
For A large, we have: ¥, >u in f; and since we have
-wa-uwx+c4\>wx+c>f(wx) in 8 ,

we conclude by a simple application of Proposition I.1. Similarly, if f£f(t) satisfies:

(s) T £t < A, (= (-8,
L -

then M_(u) is not empty for all u @ S_.
We now turn to the proof of Theorem I.1:

Proof of i)t Since, by definition, for every u @ S, the linearized operator

(~8 - £f'(u)) is one to one, u is an isolated point in S. In addition, in view of the
equation (Sp) and the Schauder estimates the set {u € §, ful T < R} is compact for
every R < +®, These two facts prove i), o
Proof of ii): We first prove that if C is a closed connected subset of So then C is
totally ordered, Of course, we may assume that C contains more than only one point; in

this case each point u of C 1is an accumulation point, that is:

S > .
vYyuecC (un)n € C, u, Z wa, u ru

Then we have




-1 .
-A(un-u) = {(f(un) - £(u))(u_-u) }(un-u) in 0

3 u -u c ¢4, u -u 0 on 9%, v - 2O ;

-«

where (f(un) - f(u))(un - u)"1 = cn(x) (= £'(u({x)) if un(x) = u(x))e Thus 0 is some

A

eigenvalue of the operators (-4 = cn) and since ¢, converges (uniformly) to c(x) =

e

£'(u(x)), we deduce:

X1(-A - cn) = 0 for n large enough ;
but this implies f(u -u) > 0 in .  Thus, we have shown that:
i Yyue€ecC, 2 >0, VvecC lvaul ¢ € ==> A1(-A - 51!%55131) =0

L Next, we define the map from C X C into R:

Aw,v) =2 (-8 —

) .
It is clear that A is continuous, therefore the set C = A”'{0} is closed. But on the
other hand one can prove in the same way as above that if A(u,v) = 0 then: J€ > 0

v ;, vec ls-ul + I;-vl < € =m=m)> A(G,;) = 0s (Indeed O is an eigenvalue of

‘ {-A - (F£(V)-£(@))(v-0)""} and as € qgoes to 0, (£(V) - £(a))(v-u)”' converges to

(f(v)-f(u))(v-u)"; since A(u,v) = 0, this implies A(;,;) = 0 for €& small enough.)

R

This shows that A~'{0} = ¢ is also open {(for the relative topology on C X C) but since
! C X C is connected and since A(u,u) = 31(-A - £'(u)) = 0 (CC Sy) we deduce:
C=cx C, or in other words:

A (=8 - (£(w) - £(v))(uv)™) =0, W, vEC .

Since we have for all u, ve6 C
-A(u-v) = {(£(u) - f(v))(u-v)"}(u-v) in 8
u-v 6 Cz(ﬁ), u-v = 0 on 90 ,

we proved that if u, v 3 C, u ¢ v then necessarily we have

either: u>v in 9, %E < ;% on 3R
or: u<v in 9, %‘&>-§% on M ;

that 18 C 1s totally ordered.




We now prove that C 1is a c! curve: without loss of generality we may assume
that C contains more than one point. Then we introduce for all v € C:
’ t(v) = fn vix)dx .
This defines a continuous map from C into R: its range is some interval (to,t1) (if
C has a maximum element, we take (ty, t;] and if C has a minimum element, we take
[tyrty))e Since C is totally ordered, it is clear chat:
t{v) = t(v') ==> v = v' i
Thus the map from C into I (v » t{(v)) is continuous and one to one. In addition
since C 1is totally ordered, we have: t(v) > t{(v') ==> v > v' in £. We may now define
a parametrization of C: I3 th Ve where v, is given by the solution of t(vt) = te
It is very easy to check that Ve 1is continucus for t € I.
We now prove that the map (t b 4 Vt) is ¢! on I and that V'(t) = w, where w,

is the normalized first eigenfunction of:

2
-.Awt = f-(vt)x‘vt in 8, w, 6 C €))

(6)
) w, >0 in & w =0 on 2o, fnwt(x)dx =1 .

since the continuity of w_ with respect to t is a standard consequence of the

t
continuity of f£'(v.), we will only prove that: %{V(t+h) - v(t)) o Vi
+

But we have:

1 ~13 01 ]
-A('}T (vt+h - vt)) = {(f(vti»h) - f(vt”(vt-O»h - vt’.) }{K(vti-h - vt)}
(7
Qv -vrec? @), v, ~v.)=0 on 3 Mv_, ~v.)>0 in 8 ;
h" "t+h t ' h' t+h t ! t+h t ’
and
(8) fo 2y, = v )(x)ax = 1
Q h' teh t * H
h 1 :
If we denote by: wt - E‘vt+h - vt). In view of (7) and (8), we have: !
lwhl 3 <, I-Aw:l 1 € C (for some C ind, of h) .
L (Q) L (R)
From well-known regularity results., this implies:
Iwhl €C, for all 1€ pc¢ e (<» if N =1,2)
t Lp(ﬂ) N-2




ot

.

but this implies, using (7): |-Auhl < C, for all 1 < p « ﬁ%; and by a

t Py

straightforward bootstrap argument and by Schauder estimates we obtain:

h
1w 1 SCcC(vocac<) .,
t CZ,Q(ﬁ)

w, solution of (6),

Thus taking if necessary a subsequence, wh +
t Cz(ﬁ) t

Remark I.3: It is easy to deduce from the above proof that the curve C has the same

regularity than £ (if f ¢ Ck, then C 1is of class Ck, for all 1 € k € =),

Proof of iii): Let C be a connected subget of S_, we may assume without loss of

generality that C contains more than one point. Let (“n) be a converging sequence in
c, u ; u. It is clear that u € §_U Sy« Suppose that u 6 So and let us try to obtain

a contradiction,

Bach u, is an accumulation point in C, thus there exists u: € C such that:

m m m -1 m
d(u - u) = {(f(un) - £(u N -u) }(un -u) in @

n 2 n m
u -9 e cC (53, u -u o, u ' -u = 0 on 3N .,

Therefore 0 is some eicanvalue of the operator (-4 - c:) where

" - {(f(u") - f(u ))(u' -u )-1} since " converges, as m goes to infinity, to

n n n n n ¢ n 4 ¥,

€ = f'(“n)' we deduce that 0 is an eigenvalue of (-8 -~ f'(un)). Now, since u ; u
and thus f'(un) M £'(u) and since X1(-A - £'(u)) = 0, this would imply that for n
large: X‘(-A - f'(un)) = 0; and this contradicts the assumption: u;, 6 C CS_. The
contradiction proves iii),

Remark 1.4: We proved in fact that if u, € S_ and u, is some accumulation point in

S, then all limit points of the sequence (un) lie in s_.

n

Proof of iv) and of Proposition I.1: We will only prove the assertions concerning m.,

M. We first remark that if M+(u) is not empty then any o in M+(u) satisfies (2),

Thus it remains to prove that if there exists w satisfying (2), then there exists a

minimum element in S above u. We will prove that this minimum element m+(u) belongs

to §, U Sge i




ooy > i AN A e sto i i v v b - ks i SR Il syl

] { To prove the existence of a minimum solution in S above u, we will adapt some

general results of H. Amann (1], [2]}. Since u € S_, there exists A1 < 0 and

v, € Cz(ﬁ) such that:

A

2
v, = £'(wv, + A v, in 8 v €C @ ,

N v, >0 in Q, v, = 0 on 90

Thus for € gmall enough (0 ¢ € € e‘)=

-A(u+sv1) = f(u) + f'(u)ev, + € A1v in Q

1 1

< f(u+cv1) in &

On the other hand, if w satisfies (2), from the strong maximum principle we deduce:

w{x) > u{x) in Q, g; < %% on M .

Therefore for € small enough (0 < € € ez):

B e R

dw 9
u+ev <w in Q, I <3 (u o+ cv1) on M ,
. Hence we obtained, for 0 < € € co - min(e‘,ez) »
. <A(u + ev1) < f(u + ev1) in M, u + t:v1 <w in Q&
s We will denote by K a positive constant such that:

£'(t) + kXt >0, for t& (~tut _ , + Wl _) .
¢ c() c(Q)
And we introduce the standard iterative method: (0 < € € eo)
4

€
€V
uO-u+ 1 H

€ € € €
< -Aun+1 + Kun+1 = t(un) + Ku in Q@ ,

€ 2,5 €
L u .8 ), LW 0 on 3 .,

It is then obvious to show that:

€ € € €
u<u, <u, <o u cos in
0 1 < un < n+ < <w

€ € 2
urues in c’d ,

€ €'’ ’
and in addition: u < u, ¥yn>» 1, ¥v0oce <e'< eo and thus: ut < ue . Hence, as ¢

€ — ~
goes to 0, u converges in cz(ﬂ) to u€s.,

-9

P . . S =




We now prove that for all € > 0 u‘es+Us

thus u @ S* v so and we will deduce

ol
that “e zQ for € small enough.
Indeed we have:

€ € € € € 3 € €
A{u - un“) + K(u - un“) = f(u) + Ku - t(un) - Ku

€
> f(“e) + Ku - t(u:“) - l(u::w1

€ € € € -1 € €
> {{(f(u) - flu N -u )T+ XHu - w. ) in @
€ € € € 2 € €
and w -uw >0 in M, u -u  €C M, u - u ., =0 on 3%
€
This implies: 4\1 (-4 - cn#‘l) >0 ,
3 € € € € -1
where Sy ™ {ttu) - f(unﬂ))(u -u ) } .
€

Next, as n goes to %, ¢ t"(ue) and thus u® @ s,us Hence u @ S+U So¢

-2 4

n+t o*
~ ~
WFu, ucu< o in T,

But the maximum principle shows that:

ulx) < ulx) in 9'%%’%% on 3 ;

and therefore we have for € small enough: u + f:v1 <u in Q, this yields: u: < ;,
ue <u and ue zu for € small enough,
Now for any WES such that w > u, u ¥ u; we obtain from the strong and Hopf
maximum principle:
u>u in ﬂ,g-g(g% on 3%
and therefore for € small enough: u + ev1 €u in R, fThis implies: u: < Tx', vn and
since u::‘ ; U we deduce u € u., This shows that u is the minimum element of S above
U We will denote it by m _(u); and we already showed that m (u) @ 5 U S.
Remark I.5: Other arguments for the existence of m+(u) can be given but we prefer the
above one since it yields a constructive existence proof.
Proof of v): Again we will only prove the assertions concerning B, M. Let C be a
connected component of S_ and suppose there exists u, with H*(uo) ¥ §. Let C' Dbe

the connected component of the set {u @ 8_, H+(;) $ P} containing Uge We first show

that C*' 1is open (for the relative topology): indeed if u @ C', m (u) satisfies:




T . . S mee s viddughis il aiinerii v ansd g _ -

“_‘ ~ - — . e~ -
' m,(u) >u in 2 3u 3 (m_ (u)) on 3N
i . + "3’ %n T+ .
Therefore for v € S, v near u; we still have: v < m+(u) in %, thus H+(v) # ¢ and
'7 this shows that C' is open.
We next show that m, is continuous on C': let un ec', u, ; u and ue C'; let
* us prove that m+(un) ; m*(u). We first remark that for n large enough, as we proved i
: : < . : < < '] e
above, we have w m+(u) in Thus L m+(un) m+(u) in §#, for n large §:
enough. This proves in particular that m+(un) is bounded in L.(ﬂ), and using the Zf
; equation (SP) and regularity estimates we deduce that m+(un) is bounded in Cz'“(n) E
b
k. (V0 <ac< 1), Now (taking if necessary a subsequence) m,(u,) converges in c2M to j-
= a K .
: u€s US, and u€ uca(u) :
Since ; = s+ U so, ; 7 u and thus from the definition of m+(u) this shows that
i u = m+(u). This proves the continuity of m,  on C'.
{ We now prove that m, is constant on C' and thus
n+(u) = m+(u°), vuec .
. Indeed, m+(C') is a connected set C S, U Sp. But because of i}, if m (C'}) N s, ta

then m,(C’') = {m (u)} CS.. And if m (C') NS, =@, we then have m,(C') CS,; and
from ii), we deduce that m_(C') is totally ordered. This will enable us to show that ¥

m is locally constant and this concludes the proof since =n is continuous and C' is

+ +

connected., Let v @ C'; if m is not constant in a relative neighborhood of v, then

+
there exists Y ec', \A ; v and m*(vn) F n+(v). Since m (v,) and m, (v) can be
compared we have:

either m+(vn) < n+(v) in Q

or n+(vn) > n+(v) in 8 .,

If the first case happens for n large eno.gh, recalling that n+(vn) ; m+(v), we should

have: v < m+(vn) in 2. And this contradicts the definition of n+(v).

Now, if the second case happens for n large enough, recalling that vn ; v < m+(v) 3‘
|

in & (and %% > %; (m*(v)) on 3); this would imply: n

this contradicts the definition of m+(vn). Thus m,_ 1is locally constant in C' and this

<m (v) <m(v)) in Q. And

shows that m, is constant on C': m+(u) - m+(u°). ¥yuec,

-11-
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We may now conclude by proving that C' is closed (for the relative topology) and
since C 1is connected, this will show that C = C'. Therefore let u, € C', o, squec
We have just proved

L < n+(un) = u+(uo) S s, v Sy -
Thus: u € m+(uo) e s+ uso, and u 7 n+(u°)- This shows that M+(u) ¥ ¢ and that
uect
Remark I.6: We would like to point ocut that because of the local compactness of §,
Theorem 1.1 is still valid (with the same proof) for the topology of any space like
H;’.(ﬂ), c;(ﬁ), c:(ﬁ') - where we denote by X, the subspace of any functional space X
of functions vanishing on M-,
Remark I.7: As it was mentioned in the Introduction, Theorem I.1 and its proof are still
valid for any uniformly elliptic second-order operaotr instead of -4, for general

nonlinearities £(x,t) instead of £(x) and for general boundary conditions (satisfying

the maximum principle).

Il. Asymptotic behaviour for quasi-bounded nonlinearities.

We consider now the (IVP)

F2-buatw in 8x (0,4, uecdQ)n c@
(IvP)
ulx,t) = 0 on 3R x (0,4), ulx,0) = u (x) in )

vwhere 0 = 8 x (0,4), uy is some given initial condition in the space X = H;'.(Q) (for

example),
We will assume that £(6 C'(R)) satisfies:

(9) Tim f(e)e™! <A, = A (-8) .
|t|” 1 1

This insures for example that, for any Uy in X, there exists a unique solution

ulx,t) of (IVP) and that:

Ju(x,t)! €C (indep, of t > 0) .
c@

-l2=
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This implias that u(e,t) is bounded in c®%@) (for £t > 8>0) forall 0<ac< 1.
In particular the orbit (u(°,t))96 is compact in X (for all & > O).

Of course u(x,t) defines a (nonlinear) semigroup: u(e,t) = s(t)uo. Finally, since
the orbit is compact in X, by well-known results (see for example C, M. Dafermos [7]) we
have, denoting by u(uo) the w-limit set of (S(t)uo)oo i.e.,

wlug) = luex,at »=ul,t) 2y
(10) w(uo) is a connected compact subset of X .
In addition, since we have a Lyapunov function namely:
(11) stv) = Jo % jov)? - F(vax ,
vhere F(t) = [o £(s)ds; we have:
(12) wlug) C 8 e 3,0 in M O cacn) .
Now applying Corollary I.t, we see that only three possibilities may happen:

i) u(uo) C s+ or ii) u(uo) c s, or iii) m(uo) C S_. It is then natural to introduce the

(]
three sets (which are disjoint):
I, = {uy 6 x, wluy) C 5} i
1_={u,6x wlu)cs}
I = {u, 6 X, wlu) C sol ; 4

we just explained why we have: X = I, v I, viI.
We will denote by B(uo,e) = {u € x, Iu—uolx ¢ ¢}. our main result concerning the

asymptotic behaviour of (IVP) is the following:

Theorem II.1: Under assumption (9) and if f € Cz(l) we have:

i) 1 VI, contains an open dense set;

+

ii) Por all 4, in 1, U Ipe u(ua) is a ginglston;
i11) 1f ugy 6 1_, there exists € > 0 such that: }

(13) ¥v @ B(ue), v “0' viuo =n) W(v) = Wwh cs"us0

where u* = m*(v), vwe wlug s

(14) vve B(uo,c), v < Qg Vv 7 ug =e=> wlv) = {u”} C s, Vs,

where u” = m (w), Vw@ w(uo).

In particular if v € B(uo.e), v uy on v < Uy V Fu, then veér U Iy {

0
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Remark II.1: Remark first that in view of Remark I.2 and assumption (9), m* and nm~ are
defined on S_ and are constant on each connected component of S_; and thus m,, m_ are
constant on u(uo) since u(uo) is connected (for u @ I_).

Remark IX.2: The fact that w(uo) is a singleton, for u, in I, can be deduced from
the fact that by part ii) of Theorem I.1 w(uo) is a c'-curve and from general results on
dynamical syatems of J. Hale and P. Massalt [10). However we give a different proof which
is a trivial consequence of the fact that w(uo) is totally ordered.

Remark II.3: The above result shows in particular that, generically in X,

s(t)uo * ué S*US

o (that is a solution of (SP) such that: A,(-A - £'(u)) > 0).

0

Remark II.4: The above result is still valid if we replace w;'-(ﬂ) by C;(m or cg(m
or the subspace E of co(!f) defined by: E = U A[-8,+8] where &(x) = dist(x,3R) and
A0

where [u,v] = {w @ Co(a-). u€ we<vl, BEis equipped with the order unit norm:
tul = inf{d > 0/ A8 € u< A8) (2 with this norm is a Banach space - for more details,

see H. Amann [2]).

Remark II.5: Similar results hold for general self adjoint uniformly elliptic second-order

operators, for general nonlinearities of the form f(x,t) and for general boundary
conditions preserving the maximum principle.
Before giving the proof of Theorem II.1, we mention the following standard comparison
principle: let “o < vo, uo 7 vo then for all t > 0 we have:
) 3
S(t)uo(x) < S(t)vo(x) in 9, Y (S(t)uo) > 5 (s(t)vo) on M .

Proof of ii): Because of (10) and of part i) of Theorem I.1, then it is trivial that

u(uo) is a singleton if uy @ I, Next, let ug -] I w(uo) is a compact connected

set C so, thus M(uo) is totally ordered. If w(uo) is not a singleton, there exist
? ) )
Uy, Uy, Uy in u(uo) such that: u, < u, < u,y in Q, = (u1) > ‘“2) > 5 (“3) on

0. Since u, ew(uo), there exists (tn)n such that u(x.tn);u1(x) in C‘(ﬁ).

Therefore for n large enough, we have: u(x,tn) < uz(x) in . And this gives:

ul{x,t) <€ S(t-tn)uz(x) = uz(x), for t? tn' And this contradicts the fact that

03 -] “’(uo)o

proof of iii): We will only prove the part concerning (13). Let u, € I, we recall a

-14-




few results proved in P. L. Lions (13]): for t large enough we have:

D (15) da > 0, A1(-A-f'(u(°,t))) € -3¢0

-

(this is true for "t = " gjince u(uo) (= S_, and by continuity this remains true for

t large).

(TeeLT A

let v,(x,t) be a normalized eigenfunction of

-dv, = £'(ulx,t)v, + A (e)v, dn T,

v1GC2(ﬁ),v1>0 in 8, v. =0 on 30,|v1|2 =1 ,

! L°(Q)

e —

(and thus by (15), x“ (t) € -a < 0).

2. 0 in C‘(n). Then

122

In (13], it is proved that: g? (X1(t)) +* 0, -g? (v'(x,t)) ¢

we have for € > O:

-

)

g-t(uu:v1) - A(u+ev‘) = f(u) + t'(n)t:v1 + X‘ev‘ + € (gi v,

and for € small enough, we deduce:

) a L)
* (u+ev1) - A(u+ev1) < f(uﬂ:v‘) -38 v+ e}?v1 .

Since for t large enough: %; (v1) < %"1 in ﬁ: we obtain finally:

.

! 3!:0 > 0, a'ro > 0 such that for € € lo,eo], for t > 'ro we have:

{(16) .
e (u+ev,) - A(u+€v1) < flutev,) in { .

Remark that we also have:

ol

O 4C > Y > 0 such that: Y8(x) < v (x,t) € C8(x) in

(recall that &(x) = dist(x,3%)).

+

Next, let u® = m*(w) (Vwe w(ug), we already showed that m, is constant on

+

w(uo) - see Remark II.1 above). A simple continuity argument shows that there exists

T>O0, V>0 such that: i
ulx,T) + v8(x) € ut(x) in | .

. Next let € be such that, for v € B(uo,c), S(T)v € u* in T (use the continuity of the

map S(T) from X into C‘(ﬁ))o

-15a
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We now take Vv € b(uo,C). v? uge v 2 Y and we are going to prove that

s(t)v c:- u’. From the choice of € above we surely “- w € u’, WES Vw6E wv
Prom the definition or u*, it just remains to prov if w G w(v) then there exists

ue w(uy) such that: w > U, w # U. And this will pe achieved with the help of (16) -

{17)s Indeed, we have:
S(TO)V(x) > s('l'o)uo(x) in 8, %; (S(To)v) < -g-; (s(‘l‘o)uo) on M ,
and thus there exists € small enough such that:
S(T )v 2 S(T uy ¢ v, (x,T)) in T .

Next because of (16), this yields:

S(t)v(x) ? ulx,t) + ev, (x,t) in U, for vo1,
or in view of (17):

S(t)v(x) » ulx,t) + evd(x) tn U, for t? T, -
Now it is easy to conclude, since if 8(tn)v ; w § w(v), there exists a subsequance ty
such that u(*,t ,) %, u© @(u;) and we have:

w>a+eyd in 0,

thus w 7 U and since we already know w ¢ u’ = m*(d), we conclude from the definition

of m*: wa -"(;) - u‘.

Proof of i): First, let us remark that it is well-known that I, is an open set (see for
example D. Henry [11]). To prove i), we are going to exhibit, for each us in X, an
open set O, such that:

0

i) O‘10 CI,VUIy i1) vy @ 0“0.
Indeed if u, eI, we take Ouo = I, Next, if U, ¢ I_, we have just seen that

there exists € > 0 such that:

VVe X u §veSu e+ ulv) (M= m* ()}, vwe wug))

We then define:

‘ .
ouo-(vax, 20 <n <0, <k ug # N8 € vSuy+nd in [))

Obviously u_. 6 O and for all v in O, : w(v) = {u’} cs ws_ and thus
0 uo “0 + 0
velI, v Io’ Finally if u, [ Io, two cases are possible;




st > . ine:
1 case: avn ; uo, vn “0' vn 6 I_ In this case we define
o =Vo (o has been defined above) .
u v v
. 0 n n n

e %y

Thus ouo c1I LJIO and uy = 1im va € Ou .

n 0

+

L.

2™ cage: €

>
° >0, Vve B(uo,eo). v Uy v 7 uo ==)> v & I* (V] Io

R I

We then define
o] = 'v e X/a30 < n <n <€, u +n 6 Cve<qy

and we conclude,

ot n26 in W 1

Remark I1.6: i) Let S = {“j' 1 <35 <N} (NS ™), we may define:

11 - [uo e x/w(uo) = (uj}}. Then it is quite obvious to show that 11 are the connected i

g —

= components of I, (and thus are open) f*
t
! ii) Let 8 = UL Cj (M € ) vhere cj are the connected components of S_, we may
T <3<
define:
j’
b3y {uoe X/w(ug) C cj} .
- It is also easy to show that Ij are the connected components of I_ and that for all

u, e Ij, there exists € > 0 such that:

-

‘"yve Bluy€)s V> uy, Vv E u, ==> w(v) = {u;}

. Vv @ Bluy,cE), v< Uy V Euy ==> wlv) = {“j} ;
vhere u; is the minimum solution of (SP) above any element of cj and u; is the ['
maximum solution of (SP) below any element of Cj (and u;, n; s, v so).

III. Variants and extensions:

III.1. Unbounded nonlinearities:

If we no more agsume (9), the solution may not exist for all time. One way to get rid
of this difficulty is to restrict our attention to an invariant domain X such that for
any u, 8 K, the solution of (IVP) exists for all t » 0 and remains bounded as ¢t + =,
Then Theorem Il.t1 remains valid for u, in X (and for the relative topology of X in

' x).
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Let us give two natural examples:

(1) x = {u_ @ X/u(+,t) exists for all t > 0, Bu(e,t)!
0 c(®)

(remark that K ¢ ¢ 1if and only if S # 9);

(11) K= {u @ x/mu<u <u in W

where u, U are sub and supersolutions of (Sp) that is satisfying:

-Au € f(u) in 9, -Au > £(u) in A
(18)

g_,iecz(h'), u<u in ¥, u<0<y on M ,
In these two cases we define:
I, = {uo € X/w(uy) C s§}
I_= {uo 8 x/w(u,) € s_}
I, = {u0 € K/w(uy) C so} .
We then have:
Theorem III.1: let £ € Cz(l) and let K be defined by (i) or (ii), we have:

i) There exists an open set O such that 0 C I, v IO' 0N K =K;

ii) Por all uy in I, v Io, m(uo) is a singleton;

iii) If uy €@ 1I_, there exists € > 0 such that:

(13*) Vv @ Blu,E) NK v uy, vEu e olv) = ') c s,V s,

where u* = at(w), vwe wlug)s

(14') VveBlu,lnK v<uy, vE uy ==> @(v) = {u}c s,V s,

where u” = m“(w), Vw@ m(uo).

> .
In particular if v @ B(uo,c) nK, v u, o v < Ugr V 7 u, then v @ I* u Io

Remark III.1: The proof uf this result is totally identical to the one of Theorem III.HV.

We just need to remark that if K is given by (i) and if there exist -u; € I_, v @ K such

that v ? uo, v Z uo then M*(w) 1is not empty on the connected component of S_

containing u(uo).

-18-
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Remark III.2: In some sense, the above result contains the results of P. L. Lions [13]

(except some geometrical descriptions heavily dependent on the convexity of the

nonlinearity f assumed in (13]).

Remark III.3: Most of the remarks made in the preceding section are still valid here (with

some obvious adaptations).

III.2 Iterative schemes:

To simplify, we will consider the case of a nonlinearity satisfying (9) and we will

assume in addition that we have:

(19) axo > 0, £(t) + Kot is nondecreasing for t > 0 .,

We consider the asymptotic behaviour of iterative schemes like: uy € X and (un)n>1
is defined by

2
(20) bu +xu =fu )+rxa o in % u €c’@, u =0 on W .

1
From (9), it is easy to deduce that u, 1is bounded in L.(Q) and thus in
%@ (0 <a <.

Now, if KX » Ko we have, wultiplying (20) by w, -u,, and integrating by parts
over

2 2 .
fnlnunl + Ru_dx - Ia Du *Du . +Kuu .dx =

n-1
= Joteta ) 4 ke Hu -u )

and because of (19), this is less than:

K 2 K 2
< = - =
Ia Pu)) + 5 u dx Ja Flu ) +35u . dx
(recall that F(t) = f; f(s)ds). On the other hand, since we have:
1 2 2 1 2 2
Iﬂ Du *Du ., +Kuu .dx= E-IQIDun| + Ku‘dx + E'IQlD“n-1| + Ku_.dx

1 2
-3 In""“n - un_1)| +Klu -u _)ax

we finally obtain, if X » Ko,z




|2

1
fn% Ipu 12 - p(udax - o 3 lou - Flu__ )dx <

n-1
1 2 2 ;
< -3 In |D(un - “n~1)| + Ko -u _)%ax
and this enables us to show that: “n - un_1 ; 0 in Cz'a(?l-)(o ¢ a< ). Therefore, if we

denote by w(uo) the get of limit points of the sequence (“n’nh' we have:
(21) u(uo) is a compact, connected set, contained in § .,
Therefore we may define again:

1, = {ug/utuy) © 8}, 1_ = {uj/wtu) C s}, I, = {u /etug) c s} .

Of course I, I_, I, are disjoint and I, UI VU1, =X

Theorem II1.2: Under assumptions (9), (19) and if K ? xo. then we have:

i Then, we have:
i
f

i) I VU 1, contains an open denss set,

ii) For all u, in 1, U1, w(u)) 1s a singleton,

iii) If v, € I_, there exists € > 0 such that:

- (13) vveg B(rzo,e), v> uye ¥ 2 uy ==> otv) = (v} c s, Vs,

where u® = a*(v), vwe wlug)s

PO
e

(14) VveBlug,e), vSu, vEu, == ely) = {u)c s, us

0 0

! vhere u” =m(w), Vwe o(uy)e

In particular if v ¢ B(uo,e), v>u, or v¢ L v Y, then v @ I’U Ige

[\]
The proof of this result is identical to the one of Theorem Il. ! and we will skip

3 it. In addition, all remarks made in the preceding sections are still valid with some

obvious modifications.
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